The function is not differentiable at
. The correct option is: (C) all real numbers except -1, 0, and 3/2
How to find non-differentiable function?
To determine where the function
is differentiable:
The function is defined for all real numbers except where the denominator equals zero. Therefore, we need to find the values of x that make the denominator zero:
![\[ 4x^3 - 2x^2 - 6x = 0 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/68jzndk8tidq5e88htbyvzslki0uxmkwjv.png)
Factoring out 2x:
![\[ 2x(2x^2 - x - 3) = 0 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/eja9arrpqjvzk8ix302s9yfhvljabo7u6e.png)
Now, solve for x:
![\[ 2x = 0 \implies x = 0 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/fd1hj9tdmhaco77om6gmsu2tjcfo6pngg9.png)
![\[ 2x^2 - x - 3 = 0 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/vh03id4oaeiu3gx4gy33xu0ycm3z0v4x9r.png)
Using the quadratic formula, find the roots:
![\[ x = (1 \pm √(25))/(4) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/4nsgsj4m84j7l9f0rzopxc0t62u5f7lgfs.png)
So, the values of x that make the denominator zero are
.
Therefore, the function is not differentiable at
. The correct option is:
![\[ \boxed{\text{O all real numbers except } -1, (3)/(2), \text{ and } 0} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/sirrrjbc7ifftkkzf61547a5ax17x044r9.png)