12.7k views
1 vote
Find sin2x, cos2x, and tan2x if tanx=-12/5 and x terminates in quadrant II

Find sin2x, cos2x, and tan2x if tanx=-12/5 and x terminates in quadrant II-example-1
User Alexwells
by
8.3k points

1 Answer

2 votes

The values are:


\[ \sin(2x) = -120 \]\\ \cos(2x) = -119 \]\\ \tan(2x) = (120)/(119) \]

Given that
\( \tan(x) = -(12)/(5) \) and x terminates in quadrant II, you can use trigonometric identities to find
\( \sin(2x) \), \( \cos(2x) \), and \( \tan(2x) \)

1. Find
\( \sin(x) \) and \( \cos(x) \):


Since \( \tan(x) = (\sin(x))/(\cos(x)) \), you can use the fact that \( \tan(x) = -(12)/(5) \) to find \( \sin(x) \) and \( \cos(x) \).


\[ \tan(x) = (\sin(x))/(\cos(x)) = -(12)/(5) \]

From this, you can deduce that
\( \sin(x) = -12 \) and \( \cos(x) = 5 \).

2. Use double-angle formulas:

The double-angle formulas are:


\[ \sin(2x) = 2\sin(x)\cos(x) \]\\ \cos(2x) = \cos^2(x) - \sin^2(x) \]\\ \tan(2x) = (\sin(2x))/(\cos(2x)) \]

3. Calculate
\( \sin(2x) \):


\[ \sin(2x) = 2 \cdot (-12) \cdot 5 = -120 \]

4. Calculate
\( \cos(2x) \):


\[ \cos(2x) = 5^2 - (-12)^2 = 25 - 144 = -119 \]

5. Calculate
\( \tan(2x) \):


\[ \tan(2x) = (-120)/(-119) = (120)/(119) \]

So, the values are:


\[ \sin(2x) = -120 \]\\ \cos(2x) = -119 \]\\ \tan(2x) = (120)/(119) \]

User Kingkong
by
8.3k points