184,495 views
32 votes
32 votes
a point on the terminal side of angle theta is given. Find the exact value of each of the six trigonometric functions of theta. given point- (3,7)

User Dispake
by
3.0k points

1 Answer

14 votes
14 votes

Given point: (3,7)

Opposite side: O

Adjacent side: A

Hypotenuse: H


\begin{gathered} O=7 \\ A=3 \\ \end{gathered}

Use pythagorean theorem to find H:


\begin{gathered} H=\sqrt[]{A^2+O^2} \\ H=\sqrt[]{3^2+7^2} \\ H=\sqrt[]{9+49} \\ H=\sqrt[]{58} \end{gathered}

Trigonometric functions:


\begin{gathered} \sin \theta=(O)/(H)=\frac{7}{\sqrt[]{58}} \\ \\ \text{Razionalizing the denominator;} \\ \sin \theta=\frac{7}{\sqrt[]{58}}\cdot\frac{\sqrt[]{58}}{\sqrt[]{58}}=\frac{7\sqrt[]{58}}{58} \end{gathered}
\begin{gathered} \cos \theta=(A)/(H)=\frac{3}{\sqrt[]{58}}_{} \\ \\ \text{Razionalizing the denominator:} \\ \cos \theta=\frac{3}{\sqrt[]{58}}_{}\cdot\frac{\sqrt[]{58}}{\sqrt[]{58}}=\frac{3\sqrt[]{58}}{58} \end{gathered}
\tan \theta=(O)/(A)=(7)/(3)
\begin{gathered} \\ \csc \theta=(H)/(O)=\frac{\sqrt[]{58}}{7} \end{gathered}
\sec \theta=(H)/(A)=\frac{\sqrt[]{58}}{3}
\cot \theta=(A)/(O)=(3)/(7)

a point on the terminal side of angle theta is given. Find the exact value of each-example-1
User Shadie
by
2.9k points