261,495 views
16 votes
16 votes
Find the value of the sine, cosine, tangent function for angle theta

Find the value of the sine, cosine, tangent function for angle theta-example-1
User Jeff Lewis
by
2.7k points

1 Answer

19 votes
19 votes

We can draw the following picture:

The sine function is given by


\begin{gathered} \sin \theta=(Opposite)/(hypotenuse) \\ \sin \theta=\frac{3}{\sqrt[]{13}} \end{gathered}

Now, we know that


\begin{gathered} \frac{3}{\sqrt[]{13}}=\frac{3}{\sqrt[]{13}}*1 \\ \text{and we can write 1 as } \\ 1=\frac{\sqrt[]{13}}{\sqrt[]{13}} \\ \text{then} \\ \frac{3}{\sqrt[]{13}}=\frac{3}{\sqrt[]{13}}*\frac{\sqrt[]{13}}{\sqrt[]{13}} \end{gathered}

but square root of 13 times square root of 13 is equal to 13, I mean


\sqrt[]{13}*\sqrt[]{13}=13

then, we have


\begin{gathered} \frac{3}{\sqrt[]{13}}=\frac{3}{\sqrt[]{13}}*\frac{\sqrt[]{13}}{\sqrt[]{13}} \\ \frac{3}{\sqrt[]{13}}=\frac{3\sqrt[]{13}}{13} \end{gathered}

then, an equivalent answer is


\sin \theta=\frac{3\sqrt[]{13}}{13}

the cosine function is given by


\begin{gathered} \cos \theta=\frac{Adjacent}{\text{hypotenuse}} \\ \text{cos}\theta=\frac{2}{\sqrt[]{13}} \end{gathered}

this answer can be rewritten as


\begin{gathered} \text{cos}\theta=\frac{2}{\sqrt[]{13}}*1 \\ \text{cos}\theta=\frac{2}{\sqrt[]{13}}*\frac{\sqrt[]{13}}{\sqrt[]{13}} \\ \text{cos}\theta=\frac{2\sqrt[]{13}}{13} \end{gathered}

and the tangent funcion is given by


\begin{gathered} \tan \theta=(opposite)/(adjacent) \\ \tan \theta=(3)/(2) \end{gathered}

Find the value of the sine, cosine, tangent function for angle theta-example-1
User Grims
by
3.3k points