147k views
4 votes
Please someone help me

Please someone help me-example-1
User NmDat
by
6.7k points

1 Answer

6 votes

The values of x and y are;

15. x = 21, y = 8

16. x = 29, y = 9

17. x = 18, y = 11

The details of the above solution are;

15. Linear pair angles are supplementary (have a sum of 180°), therefore, the sum of the linear pair angles (10·x - 61)° and (x + 10)° is 180°

(10·x - 61)° + (x + 10)° = 180°

11·x - 51 = 180

11·x = 180 + 51

x = (180 + 51)/11

(180 + 51)/11 = 21

x = 21

The vertical angle theorem that the vertical angles are congruent

The measure of congruent angles are the same, therefore;

The vertical angles (10·x - 61)° and (18·y + 5)° are congruent

(10·x - 61)° = (18·y + 5)°

10 × 21 - 61 = 18·y + 5

10 × 21 - 61 = 149

149 = 18·y + 5

18·y + 5 = 149

18·y = 149 - 5

y = (149 - 5)/18

(149 - 5)/18 = 8

y = 8

16. The linear pair angles (5·x - 17)° and (3·x - 11)° are supplementary, therefore;

(5·x - 17) + (3·x - 11) = 180°

(8·x - 28) = 180

x = (180 + 28)/8

(180 + 28)/8 = 26

x = 26

The angles, (3·x - 11)°, and the right angle plus the (2·y + 5)° angle form a line pair, therefore;

(3·x - 11)° + 90° + (2·y + 5)° = 180°

(3 × 26 - 11)° + 90° + (2·y + 5)° = 180°

67 + 90 + (2·y + 5)° = 180°

2·y = 180 - (67 + 90) - 5

y = (180 - (67 + 90) - 5)/2

y = 9

17. m∠MNQ = (8·x + 12)°, m∠PNQ = 78°, and m∠RNM = (3·y - 9)°

m∠MNQ = m∠PNQ + m∠PNM

∠PNQ ≅ ∠PNM (Definition of bisected angle, ∠MNQ)

m∠PNQ = m∠PNM

m∠MNQ = m∠PNQ + m∠PNQ

m∠MNQ = 2 × m∠PNQ

m∠PNQ = 78°

m∠MNQ = 2 × 78°

2 × 78° = 156°

m∠MNQ = 156°

m∠MNQ = (8·x + 12)°

(8·x + 12)° = 156°

x = (156 - 12)/8

(156 - 12)/8

x = 18

∠MNQ and ∠RNM are linear pair angles, therefore;

m∠MNQ + m∠RNM = 180°

m∠RNM = (3·y - 9)°

Therefore;

(8·x + 12)° + (3·y - 9)° = 180°

(8 × 18 + 12)° + (3·y - 9)° = 180°

156° + (3·y - 9)° = 180°

(3·y - 9)° = 180° - 156°

y = ((180° - 156°) + 9)/3

((180° - 156°) + 9)/3 = 11

y = 11

User Loghman
by
7.6k points