The value of

To evaluate the given integral
we can use the properties of definite integrals and the linearity of integration. We'll break the integral into two separate integrals:
![\[ \int_(0)^(1) (5x^3 + 2x^4) \,dx = \int_(0)^(1) 5x^3 \,dx + \int_(0)^(1) 2x^4 \,dx \]](https://img.qammunity.org/2024/formulas/mathematics/college/ag3885acebyl12kwfa73xdgizhhrh779ic.png)
Now, we'll find the antiderivatives of \(5x^3\) and \(2x^4\) and evaluate them at the upper and lower limits:
![\[ \int_(0)^(1) 5x^3 \,dx = (5)/(4)x^4 \Big|_(0)^(1) = (5)/(4) \]](https://img.qammunity.org/2024/formulas/mathematics/college/kog3uthxynlt0k2tl9k3n5uq8r91f8cein.png)
![\[ \int_(0)^(1) 2x^4 \,dx = (2)/(5)x^5 \Big|_(0)^(1) = (2)/(5) \]](https://img.qammunity.org/2024/formulas/mathematics/college/dgel9bccjd14dtfsa6bjut3iqewxe7n8g7.png)
Now, add these results together:
![\[ (5)/(4) + (2)/(5) = (25)/(20) + (8)/(20) = (33)/(20) \]](https://img.qammunity.org/2024/formulas/mathematics/college/egdiv3m12wmju9k7qtz94hgwdux78sitj7.png)
Therefore, the value of
