Given:
The functions are:
(1)
![h(x)=√(1-x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/kt9kya7jcg2iv0y8acw07z0uhfiax9esrf.png)
(2)
![x+y=4](https://img.qammunity.org/2022/formulas/mathematics/high-school/ixh5n38pz9tlai45kxhni484gir4x4bf09.png)
(3)
![x^2+y^2=16](https://img.qammunity.org/2022/formulas/mathematics/high-school/3v7l3lodqs8v7nsd42bwvqh7x63yr1ei4m.png)
To find:
The domain of given functions.
Solution:
Domain is the set of input and x -values.
Value under the square root must be positive because if the number under square root is negative, then it is a complex or imaginary number.
(1)
![h(x)=√(1-x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/kt9kya7jcg2iv0y8acw07z0uhfiax9esrf.png)
The function is defined if
![1-x\geq 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/yhnid67iv5vjdz07vnpp71otrj54oxriys.png)
![1\geq x](https://img.qammunity.org/2022/formulas/mathematics/high-school/5e7hvnflxzisd8xcsxxv7wll56s5drrbte.png)
The function is defined for all real values of x which are less than or equal to 1.
Therefore, the domain of the function is (-∞,1].
(2)
![x+y=4](https://img.qammunity.org/2022/formulas/mathematics/high-school/ixh5n38pz9tlai45kxhni484gir4x4bf09.png)
It is a linear function and linear function is defined for all real values of x.
Therefore, the domain of the function is (-∞,∞).
(3)
![x^2+y^2=16](https://img.qammunity.org/2022/formulas/mathematics/high-school/3v7l3lodqs8v7nsd42bwvqh7x63yr1ei4m.png)
It can be written as
![y^2=16-x^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/4n354rk2sfx1bt1iipsq7dljim34vlakw2.png)
![y=\pm √(16-x^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/yox271z1ho7kymq041bhlumqnkpjfa1dia.png)
It is defined if
![16-x^2\geq 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/bag8cj4l013y87onhdxu08ioofckrrdnrd.png)
![16\geq x^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/t5cy2lfq3lyxsb66zx0yb1erj2dkvzc59l.png)
![4\geq x\geq -4](https://img.qammunity.org/2022/formulas/mathematics/high-school/tqtfkooat6dagtotwkw5mgd5u853q9yny2.png)
This function defined for all real values of x from -4 to 4.
Therefore, the domain of the function is [-4,4].