217k views
3 votes
Which of these shows the result of using the first equation to substitute for Y in the second equation, then combining like terms?

y= 2x
2x + 3y = 16
A. 5y= 16
B. 5x= 16
C. 4x= 16
D. 8x= 16

User Gmslzr
by
7.7k points

1 Answer

5 votes

Final answer:

To solve the system of equations, substitute y = 2x into the second equation 2x + 3y = 16, combine like terms to get 8x = 16, and then divide both sides by 8 to find x = 2. The correct choice is D. 8x = 16.

Step-by-step explanation:

The student has asked how to substitute the first equation for y in the second equation and then combine like terms. The original equations are:

y = 2x

2x + 3y = 16

First, we substitute the expression for y from the first equation into the second equation:

2x + 3(2x) = 16

This simplifies to:

2x + 6x = 16

Combining like terms (the terms with x), we get:

8x = 16

This can be further simplified by dividing both sides of the equation by 8, giving us:

x = 2

The option that shows the result of the substitution and the combination of like terms is:

D. 8x = 16

User Nawlbergs
by
9.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories