Final answer:
To calculate the energy of the photon emitted by a harmonic oscillator, we can use the equation E = hf, where E is the energy of the photon, h is Planck's constant (6.626 × 10^-34 J·s), and f is the frequency of the photon.
Step-by-step explanation:
To calculate the energy of the photon emitted by a harmonic oscillator, we can use the equation:
E = hf
where E is the energy of the photon, h is Planck's constant (6.626 × 10^-34 J·s), and f is the frequency of the photon.
First, we need to determine the frequency of the photon in order to calculate its energy. We can find the frequency using the equation:
f = (1/2π) * (k/m)^0.5
where k is the stiffness of the harmonic oscillator (24 N/m) and m is the mass of the oscillator (6.8 × 10^-26 kg).
Substituting the values into the equation, we have:
f = (1/2π) * (24/6.8 × 10^-26)^0.5
Calculating the frequency, we can then determine the energy of the photon using:
E = hf