194k views
1 vote
Spencer puts $600.00 into an account to use for school expenses. The account earns 3% interest, compounded annually. How much will be in the account after 9 years?

1 Answer

4 votes

Final answer:

The future value of Spencer's account after 9 years, with a 3% annual compound interest, is $803.57.

Step-by-step explanation:

Spencer wants to calculate the future value of a $600.00 investment into an account with a 3% annual compound interest rate over a period of 9 years. To find out the amount in the account after 9 years, the formula for compound interest is used:

A = P(1 + r/n)^(nt)

Where:
A = the amount of money accumulated after n years, including interest.
P = the principal amount (the initial amount of money).
r = the annual interest rate (decimal).
n = the number of times that interest is compounded per year.
t = the time the money is invested or borrowed for, in years.

In Spencer's case:
P = $600
r = 3% or 0.03
n = 1 (since the interest is compounded annually)
t = 9 years

Let's plug these values into the formula:

A = 600(1 + 0.03/1)^(1*9)

A = 600(1 + 0.03)^9

A = 600(1.03)^9

A = $803.57

Thus, after 9 years, Spencer will have $803.57 in the account.

User HELPME
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories