Final Answer:
The horizontal speed of the car when it drives off the cliff is approximately 24.9 m/s.
Step-by-step explanation:
The horizontal speed of the car can be calculated using the horizontal motion formula:
![\[ \text{Horizontal distance} = \text{Horizontal speed} * \text{Time} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/3use2kf3ii1fudssf29ko5z2a96oto2hnd.png)
Since the car is in free fall, the time it takes to reach the ground can be determined using the vertical motion formula:
![\[ \text{Vertical distance} = (1)/(2) * \text{Acceleration due to gravity} * \text{Time}^2 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/hktcdsn7lvtnqlz0s5h1l716oxxskkew87.png)
First, calculate the time of flight using the vertical motion formula:
![\[ 51 \, \text{m} = (1)/(2) * 9.8 \, \text{m/s}^2 * \text{Time}^2 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/gupbucb7vwbmaqw433zgc118qe3k6saerp.png)
Solving for time
:
![\[ t^2 = (51 * 2)/(9.8) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ui13o55tes8ffccyhlhveeyo7ntbyf4zxa.png)
![\[ t^2 \approx 10.41 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/v2cmqol3fppt7bljjh1fh2e7r9o6okgatt.png)
![\[ t \approx 3.22 \, \text{s} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/16s9avabswj1vw7ivc5sj647pxjh2mfqj3.png)
Now, use the time to calculate the horizontal speed:
![\[ 196 \, \text{m} = \text{Horizontal speed} * 3.22 \, \text{s} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/xdul9ng1mex1x09jxlssw834zkrcrg2d51.png)
![\[ \text{Horizontal speed} \approx (196)/(3.22) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/pvlvctbbw4v9l675cra4jzz8ddbwxqg5hs.png)
![\[ \text{Horizontal speed} \approx 60.87 \, \text{m/s} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/nvy195lag9vub2m3aer9a96i301e0lqvqb.png)
Therefore, the horizontal speed of the car is approximately
, or rounded to one decimal place, 24.9 m/s.