113k views
3 votes
Rational Functions and Their Graphs 427 45-56, use transformations of f(x) = 1/x or f(x) = 1/x^2 to graph each rational function 46. g(x) = 1/x-2

User Oli Crt
by
8.6k points

1 Answer

1 vote

Final answer:

To graph the rational function g(x) = 1/(x-2), start by considering the parent function f(x) = 1/x and applying transformations. Determine the vertical and horizontal asymptotes, and plot points using a table of values.

Step-by-step explanation:

To graph the rational function g(x) = 1/(x-2), we can start by considering the parent function f(x) = 1/x and applying transformations. Let's go step by step:

  1. The function f(x) = 1/x has an asymptote at x = 0. However, for g(x) = 1/(x-2), the asymptote will shift 2 units to the right. So, the vertical asymptote of g(x) will be x = 2.

  2. The function f(x) = 1/x has a horizontal asymptote at y = 0. The same will be true for g(x) = 1/(x-2). So, the horizontal asymptote of g(x) will be y = 0.

  3. The graph of f(x) = 1/x is a decreasing function. The same will be true for g(x) = 1/(x-2), but it will be shifted 2 units to the right.

  4. Finally, we can plot points on the graph of g(x) using a table of values, considering values of x and finding the corresponding values of y using the equation g(x) = 1/(x-2).

By following these transformations and plotting points, you can graph the rational function g(x) = 1/(x-2).

User Pranav Shinde
by
7.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories