10.6k views
3 votes
For the binomial probability distribution with n = 5 and p = 0.1,

a) Find the probability that there are exactly 4 successes.
b) Find the probability that there are at least 4 successes.
c) Find the probability that there are at most 4 successes.
d) What is the shape of this binomial distribution?
A. Right-skewed
B. binompdf(5, 0.1, 4) = 0.00045
C. binomcdf(5, 0.1, 4) = 0.9999
D. 0.5
E. 1 - binomcdf(5, 0.1, 3) = 0.00046
F. 0.6708

e) What is the mean of this binomial distribution?
f) What is the standard deviation of this binomial distribution?

1 Answer

7 votes

Final answer:

The probability of exactly 4 successes in a binomial distribution with n=5 and p=0.1 is 0.00045. The probability of at least 4 successes is 0.00046, and the probability of at most 4 successes is 0.9999. The distribution is right-skewed, with a mean of 0.5 and a standard deviation of 0.67.

Step-by-step explanation:

To answer your questions regarding the binomial probability distribution with n = 5 and p = 0.1:

a) To find the probability of exactly 4 successes, we use the binomial probability formula P(X=k) = (n choose k) * p^k * (1-p)^(n-k), where X is the number of successes. Here, n = 5, p = 0.1, and k = 4. The calculation yields a probability of 0.00045.

b) The probability of at least 4 successes is the sum of the probabilities of exactly 4 and exactly 5 successes. This sum is equivalent to 1 minus the probability of 3 or fewer successes, which is 1 - binomcdf(5, 0.1, 3) = 0.00046.

c) The probability of at most 4 successes is binomcdf(5, 0.1, 4) = 0.9999.

d) The shape of this binomial distribution is right-skewed because the probability of success (0.1) is less than 0.5.

e) The mean of the binomial distribution is calculated with μ = np, which gives us 0.5.

f) The standard deviation is calculated with σ = √(npq), where q = 1 - p. The calculation yields a standard deviation of approximately 0.67.

User Komal Waseem
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories