The expression, a⁴ + 4(a + 3)² + 81 - 18a - 4(a + 3)² , when simplified is a⁴ - 18a + 81.
How do we simplify the expression?
First, we will expand the squares, then distribute the terms, and finally combine the like terms to simplify the given expression:
a⁴ + 4(a + 3)² + 81 - 18a - 4(a + 3)²
First, we expand the squares:
a⁴ + 4(a + 3)(a + 3) + 81 - 18a - 4(a + 3)²
Next, we distribute the terms:
a⁴ + 4(a² + 3a + 3(a + 3) + 81 - 18a - 4(a + 3)²
= a⁴ + 4(a² + 3a + 3a + 9) + 81 - 18a - 4(a + 3)²
Next, combine like terms:
a⁴ + 4 (a² + 6a + 9) + 81 - 18a - 4(a + 3)²
Distribute the terms:
a⁴ + 4a² + 24a + 36 + 81 - 18a - 4(a + 3)²
Then, expand the square:
a⁴ + 4a² + 24a + 36 + 81 - 18a - 4(a + 3)(a + 3)
And, distribute the terms:
a⁴ + 4a² + 24a + 36 + 81 - 18a - 4(a²+ 3a + 3(a + 3)
= a⁴ + 4a² + 24a + 36 + 81 - 18a - 4(a² + 3a + 3a + 9)
= a⁴ + 4a² + 24a + 36 + 81 - 18a - 4(a² + 6a + 9)
Next, combine like terms:
a⁴ + 4a² + 24a + 36 + 81 - 18a - 4a² - 24a - 36
Then, add the numbers:
a⁴ + 4a² + 24a + 81 - 18a - 4a² - 24a
Lastly, combine like terms:
a⁴ + 4a² - 18a - 4a² + 81
= a⁴ - 18a + 81
So, after simplifying the expression, a⁴ + 4(a + 3)² + 81 - 18a - 4(a + 3)², we have: a⁴ - 18a + 81.