23.0k views
0 votes
9 Evaluate: (a) cos 105° + sin 105° (d) tan 15° + cot 15°​

User Ayasha
by
8.8k points

1 Answer

7 votes
  • Cos 105° + Sin 105° = Cos 45° using trigonometric ratio table
  • Tan 15° + Cot 15° = 4 using trigonometric ratio table

How to evaluate using trigonometric ratio table

Given that

sin 15° =
√(3) -1

cos 15° =
√(3) +1

sin 30° = 1/2

cos 30° =
(√(3) )/(2)

cos 45° =
(1)/(√(2) )

sin 45° =
(1)/(√(2) )

To evaluate the question

a. cos 105° + sin 105°

sin ( 90° + 15°) = cos 15°

cos(90° + 15°) = sin 15°

= Cos 15° - sin 15°

So, cos 15° = cos( 45° - 30°) = sin45°cos30° - cos45°sin30°

=
(1)/(√(2) ) *
(√(3) )/(2) -
(1)/(√(2) ) * 1/2

=
(√(3) )/(2√(2) ) - (1)/(2√(2) )

cos 15° =
(√(3) -1)/(2√(2) )

sin 15° = cos(45° - 30°) = cos45°cos30° + sin45°sin30

sin 15° =
(1)/(√(2) ) *
(√(3) )/(2) +
(1)/(√(2) ) * 1/2

sin 15° =
(√(3) )/(2√(2) ) + (1)/(2√(2) )

sin 15° =
(√(3) +1)/(2√(2) )

So, cos 105° + sin 105° =
(√(3) +1)/(2√(2) ) -
(√(3) -1)/(2√(2) )

=
(√(3) +1-√(3) +1)/(2√(2) )

=
(2)/(2√(2) )

=
(1)/(√(2) )

= cos 45°

b. tan 15° + cot 15°

where tan 15° = sin 15°/cos 15°

cot 15° = cos 15°/ sin 15°

tan 15° + cot 15° =
(sin 15)/(cos 15) +(cos 15)/(sin 15)

=
(√(3) -1)/(√(3) +1) + (√(3) +1)/(√(3) -1)

=
(3+1-2√(3)+3+1+2√(3) )/((√(3) +1)(√(3) -1))

=
(8)/(3-1)

= 8/2

= 4

User Schore
by
7.6k points