Final answer:
Coinciding triangles are congruent, which means they have the same size, shape, and dimensions, a result of rigid transformations that include rotations, reflections, and translations, but not dilations. B) Coinciding triangles signify that they have undergone transformation without any change in size or orientation, implying congruency under rigid transformations.
Step-by-step explanation:
When a copy of a triangle coincides with the original triangle, it implies that the two triangles are congruent. This means they have the same size, shape, and dimensions, which indicates that the transformation involved was a rigid transformation. Rigid transformations include rotations, reflections, and translations, but they do not include dilations since dilations change the size of the figure. Therefore, based on the given information, the correct response would be B) Coinciding triangles signify that they have undergone transformation without any change in size or orientation, implying congruency under rigid transformations. This is because congruency denotes equivalence in size and shape, and rigid transformations preserve these properties without altering the figures' orientation or dimensions.