85.7k views
2 votes
Square RSTU with vertices R(-3,-1), S(-1,0), T(0,-2), and U(-2,-3); is dilated with the scale factor of k=4. What are the new points of the dilated figure?

A) Option A: R'(-12, -4), S'(-4, 0), T'(-8, -8), U'(-16, -12)
B) Option B: R'(-3, -1), S'(-1, 0), T'(-2, -2), U'(-4, -3)
C) Option C: R'(-6, -2), S'(-2, 0), T'(-4, -4), U'(-8, -6)
D) Option D: R'(-9, -3), S'(-3, 0), T'(-6, -6), U'(-12, -9)

User MINJA KIM
by
7.2k points

1 Answer

3 votes

Final answer:

To dilate the square with a scale factor of 4, multiply the x and y-coordinates by 4. The new coordinates of the vertices are R'(-12, -4), S'(-4, 0), T'(-8, -8), U'(-16, -12).

Step-by-step explanation:

To dilate the square with a scale factor of 4, we need to multiply the x-coordinates and y-coordinates of each vertex by 4. The new coordinates of the vertices are:

  • R'(-3*4, -1*4) = R'(-12, -4)
  • S'(-1*4, 0*4) = S'(-4, 0)
  • T'(0*4, -2*4) = T'(-8, -8)
  • U'(-2*4, -3*4) = U'(-16, -12)

Therefore, the correct option is A) Option A: R'(-12, -4), S'(-4, 0), T'(-8, -8), U'(-16, -12).

User Matthias Baetens
by
8.1k points