116k views
4 votes
Potassium-42 has a half-life of 12.4 hours. How much of a 745 g sample will be left after 74.4 hours?

A. 11.6 g
B. 22.2 g
C. 44.4 g
D. 88.8 g

1 Answer

5 votes

Final answer:

Approximately 22.2 g of the 745 g sample of Potassium-42 will be left after 74.4 hours.

Step-by-step explanation:

To solve this problem, we can use the formula for exponential decay:

N = N0 × (1/2)^(t/h)

Where N is the amount remaining, N0 is the initial amount, t is the time elapsed, and h is the half-life.

Given that the initial amount is 745 g and the half-life is 12.4 hours, we can plug these values into the formula:

N = 745 × (1/2)^(74.4/12.4)

Calculating this expression, we find that approximately 22.2 g will be left after 74.4 hours.

User Till Helge
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.