190k views
4 votes
How to solve cos (6 theta) + i sin (6 theta)?

Option 1: Use the Pythagorean trigonometric identity.
Option 2: Convert it to exponential form.
Option 3: Apply the double angle formula for sine.
Option 4: Simplify using the half-angle formula for cosine.

User Damson
by
7.9k points

1 Answer

3 votes

Final answer:

To solve cos (6 theta) + i sin (6 theta), you can convert it to exponential form using Euler's formula. The solution is e^(i 6 theta).

Step-by-step explanation:

To solve cos (6 theta) + i sin (6 theta), we can use Option 2: Convert it to exponential form.

  1. Start by converting the trigonometric functions to their exponential form using Euler's formula: cos (theta) = (e^(i theta) + e^(-i theta))/2 and sin (theta) = (e^(i theta) - e^(-i theta))/(2i).
  2. Apply the exponential form to the given equation: cos (6 theta) + i sin (6 theta) = (e^(i 6 theta) + e^(-i 6 theta))/2 + i(e^(i 6 theta) - e^(-i 6 theta))/(2i).
  3. Simplify the equation: (e^(i 6 theta) + e^(-i 6 theta))/2 + i(e^(i 6 theta) - e^(-i 6 theta))/(2i) = (e^(i 6 theta) + e^(-i 6 theta))/2 + (e^(i 6 theta) - e^(-i 6 theta))/2.
  4. Combine like terms: (e^(i 6 theta) + e^(-i 6 theta) + e^(i 6 theta) - e^(-i 6 theta))/2 = 2(e^(i 6 theta))/2.
  5. Simplify further: 2(e^(i 6 theta))/2 = e^(i 6 theta).

Therefore, the solution to cos (6 theta) + i sin (6 theta) is e^(i 6 theta).

User Igor Tandetnik
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories