Final answer:
The transformation from PQRS to P'Q'R'S' is a reflection about the X-axis, as each point's y-coordinate changes sign while the x-coordinate remains the same.
Step-by-step explanation:
The transformation from quadrilateral PQRS to P'Q'R'S' involves changing the sign of the y-coordinates while the x-coordinates remain unchanged. This indicates a reflection over the x-axis. When reflecting a figure over the x-axis, each point (x, y) in the figure is transformed to (x, -y). Checking the given coordinates verifies this transformation:
- P = (-3, 3) becomes P' = (-3, -3)
- Q = (1, -4) becomes Q' = (1, 4)
- R = (5, 3) becomes R' = (5, -3)
- S = (2, 14) becomes S' = (2, -14)
Hence, the correct transformation is Reflected about the X-axis (Option C).