Final answer:
The operation that results in the simplified expression x⁵ + x⁴ - 5x³ - 3x² + x - 8 is A. Q - P.
Step-by-step explanation:
The operation that results in the simplified expression x⁵ + x⁴ - 5x³ - 3x² + x - 8 is A. Q - P.
First, let's simplify the given polynomials:
P = x⁴ + 3x³ + 2x² - x + 2
Q = (x³ + 2x² + 3)(x² - 2)
Multiplying Q by P gives:
PQ = (x⁴ + 3x³ + 2x² - x + 2) * (x³ + 2x² + 3)(x² - 2)
Expanding and combining like terms gives:
PQ = x⁷ + 2x⁶ + 5x⁵ + 3x⁴ - 2x³ + 11x² - 6x - 4
Subtracting PQ from the given expression gives:
x⁵ + x⁴ - 5x³ - 3x² + x - 8 - (x⁷ + 2x⁶ + 5x⁵ + 3x⁴ - 2x³ + 11x² - 6x - 4) = -x⁷ - 2x⁶ - 6x⁵ - 8x⁴ + 7x³ - 14x² + 7x - 4
Therefore, the operation that results in the simplified expression x⁵ + x⁴ - 5x³ - 3x² + x - 8 is A. Q - P.