Final Answer:
For x = (x-1)/(x+1), the value of the derivative at x=3 is
![\[ \text{Closest option:} \quad (-1)/(4) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/a6og97yfwl1bqrrmx8qe48m64fvi5oo83b.png)
The correct option is not among the provided choices.
None of the choices A, B, C and D are correct
Explanation:
To find the derivative of
at x = 3 using the definition of the derivative as a limit, we'll use the following formula:
![\[ f'(x) = \lim_{{h \to 0}} (f(x + h) - f(x))/(h) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/u6hl930osxfdo0211qu2kr99q3eubokoao.png)
First, find f(x):
![\[ f(x) = (x - 1)/(x + 1) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/k2oc31ympb22o3ar8oc2l5yaocfvr88wac.png)
Now, find f'(x) using the definition of the derivative:
![\[ f'(x) = \lim_{{h \to 0}} (((x + h) - 1)/((x + h) + 1) - (x - 1)/(x + 1))/(h) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/13e4zw44d5raa5eg7roilkb5hibf0w55pp.png)
Combine the fractions:
![\[ f'(x) = \lim_{{h \to 0}} ((x + h - 1)/(x + h + 1) - (x - 1)/(x + 1))/(h) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/3p2t2zjmgbr8std4vdqyczz8ryqvn2bpmf.png)
Combine the fractions in the numerator:
![\[ f'(x) = \lim_{{h \to 0}} (((x + h - 1)(x + 1) - (x - 1)(x + h + 1))/((x + h + 1)(x + 1)))/(h) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/k4kua868zln6i8dhjc0df3wnjagu2ecp16.png)
Now, simplify the numerator:
![\[ f'(x) = \lim_{{h \to 0}} (x^2 + (2h - 2)x + h^2 - 1 - (x^2 - (2h + 2)x + h^2 + 1))/((x + h + 1)(x + 1)) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/670vk814b2p05ec04a4lus8s5dc7cs44wy.png)
Combine like terms:
![\[ f'(x) = \lim_{{h \to 0}} (4hx - 4)/((x + h + 1)(x + 1)) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/y8m1ep73c0tkmvd09uwwx70h4cfrjsauv5.png)
Now, substitute x = 3 into the expression:
![\[ f'(3) = \lim_{{h \to 0}} (12h - 4)/((3 + h + 1)(3 + 1)) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/kkhljxb0y9177hy8nwkkg8l48ibrez93w9.png)
Simplify further:
![\[ f'(3) = \lim_{{h \to 0}} (12h - 4)/((h + 4)(4)) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/38ses9sf9t3nalz1l7ekhn4thau60wclt4.png)
Now, plug in h = 0:
![\[ f'(3) = (-4)/(4 \cdot 4) = (-1)/(4) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/cce40574444d3r5gppu77909op2yxmu4mo.png)
So, the correct option is not among the provided choices. The closest option is:
![\[ \text{Closest option:} \quad (-1)/(4) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/a6og97yfwl1bqrrmx8qe48m64fvi5oo83b.png)
None of the choices A, B, C and D are correct