58.5k views
1 vote
Find the reliability factor, Zα/2, to estimate the mean, of a normally distributed population with a known population variance for the following.

A) 81% confidence level
B) 86% confidence level
C) 80% confidence level

User Veraticus
by
7.7k points

1 Answer

0 votes

Final answer:

To find the reliability factor, you need to determine the z-score corresponding to the desired confidence level. The z-score can be found using a standard normal probability table or a calculator. For 81% confidence level, the reliability factor is approximately 1.41. For 86% confidence level, the reliability factor is approximately 1.56. For 80% confidence level, the reliability factor is approximately 1.28.

Step-by-step explanation:

The reliability factor, Zα/2, is used to estimate the mean of a normally distributed population with a known population variance. To find the reliability factor, we need to determine the z-score corresponding to the desired confidence level. The z-score can be found using a standard normal probability table or a calculator.

  1. For the 81% confidence level, the area in the tails is 0.19. Since the distribution is symmetric, each tail will have an area of 0.095. Therefore, the z-score corresponding to this confidence level is approximately 1.41.
  2. For the 86% confidence level, the area in the tails is 0.14. Each tail will have an area of 0.07. The z-score corresponding to this confidence level is approximately 1.56.
  3. For the 80% confidence level, the area in the tails is 0.20. Each tail will have an area of 0.10. The z-score corresponding to this confidence level is approximately 1.28.
User Amit Thakkar
by
9.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.