Given:
A directed line segment begins at F(-8, -2), ends at H(8, 6), and is divided in the ratio 8 to 2 by G.
To find:
The coordinates of point G.
Solution:
Section formula: If a point divide a line segment with end points
and
in m:n, then the coordinates of that point are
![Point=\left((mx_2+nx_1)/(m+n),(my_2+ny_1)/(m+n)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/duiys1e7idsuiliol2meq19n4yl6nslw49.png)
Point G divide the line segment FH in 8:2. Using section formula, we get
![G=\left((8(8)+2(-8))/(8+2),(8(6)+2(-2))/(8+2)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/2jt97g6viywhclakh4naodl98hukk8ol5u.png)
![G=\left((64-16)/(10),(48-4)/(10)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/7e2xj89j8g65cm5qhm3pd5skrsr3z0isa9.png)
![G=\left((48)/(10),(44)/(10)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/61navl251m1et27c2v4omcdrz7eydzgkxf.png)
![G=\left(4.8,4.4\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/eirjragaohuj1p4xe41yrfjttvphcib4qc.png)
Therefore, the coordinates of point G are (4.8, 4.4).