Answer:
The kinetic energy of the proton at the end of the motion is 1.425 x 10⁻¹⁶ J.
Step-by-step explanation:
Given;
initial velocity of proton,
= 3 x 10⁵ m/s
distance moved by the proton, d = 3.5 m
electric field strength, E = 120 N/C
The kinetic energy of the proton at the end of the motion is calculated as follows.
Consider work-energy theorem;
W = ΔK.E

where;
K.Ef is the final kinetic energy
W is work done in moving the proton = F x d = (EQ) x d = EQd




Therefore, the kinetic energy of the proton at the end of the motion is 1.425 x 10⁻¹⁶ J.