169k views
0 votes
Match each expression on the left with its product on the right. Some answer

options on the right will be used more than once.
-6k² (2k³ - 4k²-k) -12k4 +24k² + 6k
-6k² (2k²-4k-1)
-6k (2k³ - 4k²-k) -12k + 24k³ + 6k²
-6k (2k³-4k-1). -12k + 24k4 + 6k³

Click and hold an item in one column, then drag it to the matching item in the other column. Be sure your
curser is over the target before releasing. Need help?

1 Answer

1 vote

Answer:

Explanation:

Let's simplify each expression:

1. \(-6k^2 (2k^3 - 4k^2 - k)\):

\[ -12k^5 + 24k^4 + 6k^3 \]

2. \(-6k^2 (2k^2 - 4k - 1)\):

\[ 12k^4 - 24k^3 - 6k^2 \]

3. \(-6k (2k^3 - 4k^2 - k)\):

\[ -12k^4 + 24k^3 + 6k^2 \]

4. \(-6k (2k^3 - 4k - 1)\):

\[ 12k^4 - 24k^2 - 6k \]

Now, let's match each expression on the left with its simplified form on the right:

- \(-6k^2 (2k^3 - 4k^2 - k)\) corresponds to \(-12k^5 + 24k^4 + 6k^3\).

- \(-6k^2 (2k^2 - 4k - 1)\) corresponds to \(12k^4 - 24k^3 - 6k^2\).

- \(-6k (2k^3 - 4k^2 - k)\) corresponds to \(-12k^4 + 24k^3 + 6k^2\).

- \(-6k (2k^3 - 4k - 1)\) corresponds to \(12k^4 - 24k^2 - 6k\).

So, the matching pairs are:

1. \(-6k^2 (2k^3 - 4k^2 - k)\) matches with \(-12k^5 + 24k^4 + 6k^3\).

2. \(-6k^2 (2k^2 - 4k - 1)\) matches with \(12k^4 - 24k^3 - 6k^2\).

3. \(-6k (2k^3 - 4k^2 - k)\) matches with \(-12k^4 + 24k^3 + 6k^2\).

4. \(-6k (2k^3 - 4k - 1)\) matches with \(12k^4 - 24k^2 - 6k\).

User Andresantacruz
by
8.8k points