Answer:
Explanation:
Let's simplify each expression:
1. \(-6k^2 (2k^3 - 4k^2 - k)\):
\[ -12k^5 + 24k^4 + 6k^3 \]
2. \(-6k^2 (2k^2 - 4k - 1)\):
\[ 12k^4 - 24k^3 - 6k^2 \]
3. \(-6k (2k^3 - 4k^2 - k)\):
\[ -12k^4 + 24k^3 + 6k^2 \]
4. \(-6k (2k^3 - 4k - 1)\):
\[ 12k^4 - 24k^2 - 6k \]
Now, let's match each expression on the left with its simplified form on the right:
- \(-6k^2 (2k^3 - 4k^2 - k)\) corresponds to \(-12k^5 + 24k^4 + 6k^3\).
- \(-6k^2 (2k^2 - 4k - 1)\) corresponds to \(12k^4 - 24k^3 - 6k^2\).
- \(-6k (2k^3 - 4k^2 - k)\) corresponds to \(-12k^4 + 24k^3 + 6k^2\).
- \(-6k (2k^3 - 4k - 1)\) corresponds to \(12k^4 - 24k^2 - 6k\).
So, the matching pairs are:
1. \(-6k^2 (2k^3 - 4k^2 - k)\) matches with \(-12k^5 + 24k^4 + 6k^3\).
2. \(-6k^2 (2k^2 - 4k - 1)\) matches with \(12k^4 - 24k^3 - 6k^2\).
3. \(-6k (2k^3 - 4k^2 - k)\) matches with \(-12k^4 + 24k^3 + 6k^2\).
4. \(-6k (2k^3 - 4k - 1)\) matches with \(12k^4 - 24k^2 - 6k\).