Answer:
x=1
Explanation:
Notice that 6=2*3, so we can express 6^(3x-1) as {2^(3x-1)}*{3^(3x-1)}.
Now, substitute this into the equation:
2^{2+x}*3^x= 2/3*{2^(3x-1)}*{3^(3x-1)}
To simplify, let's clear the fraction by multiplying both sides by 3:
3*2^{2+x}*3^x= 3*(2/3)*{2^(3x-1)}*{3^(3x-1)}
3*2^{2+x}*3^x= 2*{2^(3x-1)}*{3^(3x-1)}
Now, use the properties of exponents. Distribute the exponents on both sides:
3*2^2*2^x*3^x= 2*2^3x*2^(-1)*3^3x*3^(-1)
Simplify both sides:
12*2^x*3^x=(2/6)*2^3x*3^3x
12*6^x=(6^3x)/3
6^3x=36*6^x
(6^x)^3=36*6^x
36=(6^x)^2
6^2=(6^x)^2
6=6^x
6^1=6^x
Therefore:
x=1