220k views
0 votes
Will crown best answer

Will crown best answer-example-1
User Meilo
by
8.1k points

1 Answer

5 votes

Answer:

98.77%

Explanation:

The probability that a randomly chosen item from the manufacturer’s items has a length less than 10.5 inches can be calculated using the cumulative distribution function (CDF) of the normal distribution. The CDF gives the probability that a random variable is less than or equal to a certain value.

The mean length of the items is 6.7 inches and the standard deviation is 1.7 inches 1. Let X be the length of a randomly chosen item. Then X ~ N(6.7, 1.7^2) 1. We want to find P(X < 10.5).

Using the standard normal distribution, we can standardize X as follows:

Z=σX−μ​=1.710.5−6.7​=2.2353

Then, we can use a standard normal distribution table or calculator to find that P(Z < 2.2353) is approximately 0.9877 1. Therefore, the probability that a randomly chosen item has a length less than 10.5 inches is approximately 98.77%.

User Nits
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories