188k views
2 votes
F(x)= 6x³-9x²+18x-18÷7x³-8x²+3x-20
What is the value of f (3)

User Steffanie
by
8.0k points

2 Answers

1 vote

Answer:


(117)/(106)

Explanation:

given


f(x)=(6x^3-9x^2+18x-18)/(7x^3-8x^2+3x-20),

we are to find the value of
f(3). we substitute
x=3 and find the value of the rational function.


f(3)=(6(3)^3-9(2)^2+18(3)-18)/(7(3)^3-8(3)^2+3(3)-20)

now we evaluate.


(6(3)^3-9(3)^2+18(3)-18)/(7(3)^3-8(3)^2+3(3)-20)=(6(27)-9(9)+18(3)-18)/(7(27)-8(9)+3(3)-20)
\implies (162-81+54-18)/(189-72+9-20)


\implies (117)/(106).

User Abhishek Bhagate
by
8.1k points
0 votes

Answer:


\sf f(3) = (117)/(106)

Explanation:

To find the value of
\sf f(3) for the given function:


\sf f(x) = (6x^3 - 9x^2 + 18x - 18)/(7x^3 - 8x^2 + 3x - 20)

Simply substitute
\sf x = 3 into the function:


\sf f(3) = (6(3)^3 - 9(3)^2 + 18(3) - 18)/(7(3)^3 - 8(3)^2 + 3(3) - 20)

Now, calculate the numerator and denominator separately and then divide:


\sf f(3) = (6(27) - 9(9) + 18(3) - 18)/(7(27) - 8(9) + 3(3) - 20)


\sf f(3) = (162 - 81 + 54 - 18)/(189 - 72 + 9 - 20)


\sf f(3) = (117)/(106)

So,
\sf f(3) = (117)/(106).

User SonOfRa
by
7.9k points