230k views
2 votes
Use the binomial theorem to expand (a b)6. A.6c0a6 6c1a5b 6c2a4b2 6c3a3b3 6c4a2b4 B.6c5ab5 6c0a6b 6c1a5b2 6c2a4b3 6c3a3b4 C.6c4a2b5 6c5ab6 6c6b7 6c0a6 6c1a5b D.6c2a4b2 6c3a3b3 6c4a2b4 6c5ab5 6c6b6

User Darkgaze
by
8.0k points

1 Answer

6 votes

Answer:

The expansion of (a + b)^6 is a^6 + 6a^5 b + 15a^4 b^2 + 20a^3 b^3 + 15a^2 b^4 + 6ab^5 + b^6.

Option (a) is true.

Explanation:

The binomial theorem states that for any positive integer n:

(a + b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1) b^1 + C(n, 2)a^(n-2) b^2 + ... + C(n, n-1)a^1 b^(n-1) + C(n, n)a^0 b^n

where C(n, k) represents the binomial coefficient, given by:

C(n, k) = n! / (k!(n-k)!)

In this case, we want to expand (a + b)^6, so n = 6.

(a + b)^6 = C(6, 0)a^6 b^0 + C(6, 1)a^5 b^1 + C(6, 2)a^4 b^2 + C(6, 3)a^3 b^3 + C(6, 4)a^2 b^4 + C(6, 5)a^1 b^5 + C(6, 6)a^0 b^6

Expanding each term using the binomial coefficient formula:

(a + b)^6 = (1)a^6 (1) + (6)a^5 b^1 + (15)a^4 b^2 + (20)a^3 b^3 + (15)a^2 b^4 + (6)a^1 b^5 + (1)a^0 b^6

Simplifying each term:

(a + b)^6 = a^6 + 6a^5 b + 15a^4 b^2 + 20a^3 b^3 + 15a^2 b^4 + 6ab^5 + b^6

Therefore,

Option (a) is true.

Question: Use the binomial theorem to expand (a + b)^6.

a) a^6 + 6a^5 b + 15a^4 b^2 + 20a^3 b^3 + 15a^2 b^4 + 6ab^5 + b^6

b) a^6 + 6a^5 b + 15a^4 b^2 + 20a^3 b^3 + 15a^2 b^4 + 6ab^5

c) a^6 + 6a^5 b + 15a^4 b^2 + 20a^3 b^3 + 6ab^5 + b^6

d) a^6 + 6a^5 b + 15a^4 b^2 + 20a^3 b^3 + 15a^2 b^4 + b^6

User TPS
by
7.1k points