226k views
3 votes
If m∠2 = 98°, m∠3 = 23° and m∠8 = 70°, find the measure of each missing angle. m∠1=? m∠2=? m∠3=? m∠4=? m∠5=? m∠6=? m∠7=?

User Brakertech
by
6.9k points

1 Answer

6 votes

The value of the angles are;

  • m∠1 = 82°
  • m∠2 = 98°
  • m∠3 = 23°
  • m∠4 = 59°
  • m∠5 = 121°
  • m∠6 = 51°
  • m∠7 = 59°
  • m∠8 = 70°
  • m∠9 = 51°
  • m∠10 = 129°

What is the measure of the missing angles?

The sum of angles in a triangle = 180°.

The sum of angles on a straight line = 180°

Alternate angles are equal.

m∠1 + m∠2 = 180° (sum of angles on a straight line = 180°)

m∠1 + 98 = 180

m∠1 = 180 - 98

m∠1 = 82°

m∠2 + m∠3 + m∠7 = 180° (sum of angles in a triangle = 180°)

98 + 23 + m∠7 = 180

m∠7 + 121 = 180

m∠7 = 180 - 121

m∠7 = 59°

m∠4 = m∠7 (alternate angles are equal)

m∠4 = 59°

m∠6 + m∠7 + m∠8 = 180° (sum of angles on a straight line = 180°)

m∠6 + 59 + 70 = 180

m∠6 + 129 = 180

m∠6 = 180 - 129

m∠6 = 51°

m∠4 + m∠8 + m∠9 = 180° (sum of angles in a triangle = 180°)

59 + 70 + m∠9 = 180

m∠9 + 129 = 180

m∠9 = 180 - 129

m∠9 = 51°

m∠4 + m∠5 = 180° (sum of angles on a straight line = 180°)

m∠5 + 59 = 180

m∠5 = 180 - 59

m∠5 = 121°

m∠10 + m∠9 = 180° (sum of angles on a straight line = 180°)

m∠10 + 51 = 180

m∠10 = 180 - 51

m∠10 = 129°

Therefore, the missing angles are calculated using different angle theorem.

If m∠2 = 98°, m∠3 = 23° and m∠8 = 70°, find the measure of each missing angle. m∠1=? m-example-1
User Fernando Maymone
by
7.7k points