30.1k views
0 votes
Keep these in unsimplified form.

Keep these in unsimplified form.-example-1

1 Answer

2 votes

Answer:


\text{(a) } b'(x)= 3\left((x^2)/(x+1)\right)^3 \left(((2x)(x+1)-x^2)/((x+1)^2)\right)\\\\ \\\text{(b) } c'(x)= \frac{2(x^2+3x)^{(1)/(2)}-(2x)((1)/(2)(x^2+3x)^{-(1)/(2)}(2x+3)}{((x^2+3x)^{(1)/(2)})^2}\\\\ \\\text{(c) } d'(x)=(e^x)(\sec^2(x))+(\tan(x))(e^x)

As per request, answers have been left unsimplified.

Explanation:

The task is to determine the derivatives of three given functions, and we will address each one individually. Here are our given functions:


\text{(a) } b(x)=\left((x^2)/(x+1)\right)^3\\\\ \\\text{(b) } c(x)=(2x)/(√(x^2+3x))\\\\ \\\text{(c) } d(x)=e^x \tan(x)


\hrulefill

For part (a):

We will apply the power rule, chain rule, and the quotient rule. Here are these rules written out:


\boxed{\left\begin{array}{ccc}\text{\underline{Power Rule:}}\\\\(d)/(dx)[x^n]=nx^(n-1)\end{array}\right}


\boxed{\left\begin{array}{ccc}\text{\underline{The Chain Rule:}}\\\\(d)/(dx)[f(g(x))] =f'(g(x))\cdot g'(x)\end{array}\right}


\boxed{\left\begin{array}{ccc}\text{\underline{The Quotient Rule:}}\\\\(d)/(dx)\Big[(f(x))/(g(x)) \Big] = (f'(x)g(x)-f(x)g'(x))/((g(x))^2)\end{array}\right }

We have,


\Longrightarrow b(x)=\left((x^2)/(x+1)\right)^3\\\\\\\\(d)/(dx) [b(x)]=(d)/(dx)\left[\left((x^2)/(x+1)\right)^3\right]

Applying the power rule and chain rule:


\Longrightarrow b'(x)=3\left((x^2)/(x+1)\right)^3 \cdot (d)/(dx)\left[(x^2)/(x+1)\right]

To take the derivative of the expression on the far right, use the quotient rule:


\Longrightarrow b'(x)=3\left((x^2)/(x+1)\right)^3 \cdot \left((((d)/(dx)[x^2])(x+1)-(x^2)((d)/(dx)[x+1]))/((x+1)^2)\right)

Finishing the derivative we get,


\therefore b'(x)= \boxed{3\left((x^2)/(x+1)\right)^3 \cdot \left(((2x)(x+1)-x^2)/((x+1)^2)\right)}

For part (b):

To find the derivative of c(x), first change the square root to a power.


\Longrightarrow c(x)=(2x)/(√(x^2+3x))\\\\\\\\\Longrightarrow c(x)=\frac{2x}{(x^2+3x)^{(1)/(2)}}\\\\\\\\\Longrightarrow (d)/(dx)[c(x)]=(d)/(dx)\left[\frac{2x}{(x^2+3x)^{(1)/(2)}}\right]

Now we can use the quotient rule:


\Longrightarrow c'(x)= \frac{((d)/(dx)[2x])((x^2+3x)^{(1)/(2)})-(2x)((d)/(dx)[(x^2+3x)^{(1)/(2)}])}{((x^2+3x)^{(1)/(2)})^2}

Use the chain rule to take the derivative of the expression to the 1/2 power:


\Longrightarrow c'(x)= \frac{2(x^2+3x)^{(1)/(2)}-(2x)((1)/(2)(x^2+3x)^{-(1)/(2)}\cdot(d)/(dx)[x^2+3x])}{((x^2+3x)^{(1)/(2)})^2}

Finishing the derivative, we get:


\therefore c'(x)= \boxed{ \frac{2(x^2+3x)^{(1)/(2)}-(2x)((1)/(2)(x^2+3x)^{-(1)/(2)}\cdot(2x+3)}{((x^2+3x)^{(1)/(2)})^2}}

For part (c):

To differentiate d(x) we will use the following rules:


\boxed{\left\begin{array}{ccc}\text{\underline{Product Rule:}}\\\\(d)/(dx)[f(x)g(x)]=f(x)g'(x)+g(x)f'(x) \end{array}\right }


\boxed{\left\begin{array}{ccc}\text{\underline{Exponetial Rule:}}\\\\ (d)/(dx)[e^x]=e^x\end{array}\right}


\boxed{\left\begin{array}{ccc}\text{\underline{Tangent Rule:}}\\\\ (d)/(dx)[\tan(x)]=\sec^2(x)\end{array}\right}

Start by using the product rule:


\Longrightarrow d(x)=e^x \tan(x)\\\\\\\\\Longrightarrow (d)/(dx) [d(x)]=(d)/(dx) [e^x \tan(x)]\\\\\\\\\Longrightarrow d'(x)=(e^x)((d)/(dx) [\tan(x)])+(\tan(x))((d)/(dx) [e^x])

Now applying the exponential rule and tangent rule:


\therefore d'(x)=\boxed{(e^x)(\sec^2(x))+(\tan(x))(e^x)}

Thus, all derivatives have been found. None have been simplified as per your request.

User Ishimwe
by
7.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories