The sample standard deviation noise levels at 5 airports is: 7.7
How to find standard deviation?
To calculate the sample standard deviation (s) for the given data set:
Data: 132, 126, 135, 147, 133
Find the mean (
):
![\[ \bar{x} = (132 + 126 + 135 + 147 + 133)/(5) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/tzoorebdd5hw68mzcdwo18x824xniqn8m0.png)
![\[ \bar{x} = (673)/(5) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/i8aqzx4xe3xp50y0070qe4ipjryyp2jonu.png)
![\[ \bar{x} = 134.6 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/x6s6kb4z91q5xspea9gy2nvb4e0hiwzpjr.png)
Find the squared deviations from the mean for each data point:
![\[ (132 - 134.6)^2 = 6.76 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/fprupbsqy3zqjzo90e3cb05x1ooctgu31n.png)
![\[ (126 - 134.6)^2 = 73.96 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/8adsqf4e4ln4tr8csfbnnbcka53bg3sd7l.png)
![\[ (135 - 134.6)^2 = 0.16 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/c0mm89blel20z6zoblndgzpz47v8bjixsn.png)
![\[ (147 - 134.6)^2 = 154.76 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/dv4kumqsjnjd45tahtakghudicg8opyw0j.png)
![\[ (133 - 134.6)^2 = 2.56 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/c72b1ofa3z6z92x0kr9tpyovapuf3524ao.png)
Find the sum of the squared deviations:
![\[ 6.76 + 73.96 + 0.16 + 154.76 + 2.56 = 238.2 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/dy8qp238wp574drutwmfjj8qsxdgst4ihj.png)
Divide the sum by n-1 (where n = number of data points):
![\[ s^2 = (238.2)/(5-1) = (238.2)/(4) = 59.55 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/q395aoowy5kp6x7c2y8ms0x763z2l15tld.png)
Take the square root to find the sample standard deviation:
![\[ s = √(59.55) \approx 7.718 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/raqahd0f9tpzdhy0luxobboci2g8888w1q.png)
So, the sample standard deviation for the given data set is approximately 7.7 (rounded to one decimal place).