The 95% confidence interval for the population proportion of parts that are not usable is approximately 0.140 to 0.360.
How to find confidence interval?
Standard Error:
The formula is given by:
![\[ \hat{p} \pm Z * \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/5z5y07079pqlzrcu8iu6xefu9q2ied5g6h.png)
Where:
= sample proportion of non-usable parts.
n = sample size.
Z = Z-score corresponding to the desired confidence level (for 95%, Z ≈ 1.96).
![\[ \text{Standard Error} = \sqrt{(0.25 * (1 - 0.25))/(60)} \\= \sqrt{(0.25 * 0.75)/(60)} \\= \sqrt{(0.1875)/(60)} \\\approx 0.0559 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/88b6mh067wumovw7levpnngwqj71a9osbu.png)
Confidence Interval:
Using the Z-score for a 95% confidence level (1.96):
Lower Bound:
![\[ 0.25 - 1.96 * 0.0559 \approx 0.25 - 0.1096 \\= 0.1404 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/bea4cnzmnzsd32tykj8yn0hw8ng4g4bjcd.png)
Upper Bound:
![\[ 0.25 + 1.96 * 0.0559 \approx 0.25 + 0.1096 \\= 0.3596 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/5max8fjcoumg7pum1owxvll1aqi6wriw8o.png)
Therefore, the 95% confidence interval for the proportion of parts that are not usable is approximately from 0.1404 (14.04%) to 0.3596 (35.96%).