Final answer:
To find wₛ(1,0) and wₜ(1,0), we need to evaluate the partial derivatives of w(s, t) with respect to s and t. The value of wₛ(1,0) is -2Fₛ(2,3) - 1, and the value of wₜ(1,0) is 6Fₜ(2,3) + 10.
Step-by-step explanation:
To find wₛ(1,0) and wₜ(1,0), we need to evaluate the partial derivatives of w(s, t) with respect to s and t. Let's start with wₛ(1,0):
wₛ(1,0) = Fₛ(u(1,0), v(1,0)) * uₛ(1,0) + Fᵤ(u(1,0), v(1,0))
Substituting the given values:
wₛ(1,0) = Fₛ(2,3) * (-2) + (-1) = -2Fₛ(2,3) - 1
Similarly, to find wₜ(1,0):
wₜ(1,0) = Fₜ(u(1,0), v(1,0)) * uₜ(1,0) + Fᵥ(u(1,0), v(1,0))
wₜ(1,0) = Fₜ(2,3) * 6 + 10 = 6Fₜ(2,3) + 10