Final answer:
To evaluate the given integrals using Integration by Parts (IBP), we can apply the formula ∫u dv = uv - ∫v du. Using this formula, we can evaluate each integral step-by-step.
Step-by-step explanation:
To evaluate the given integrals using Integration by Parts (IBP), we need to use the formula:
∫u dv = uv - ∫v du
a. For the integral ∫sin-1(x) dx, we can let u = sin-1(x) and dv = dx.
This gives du = 1/√(1-x2) dx and v = x. Applying the formula, we have:
∫sin-1(x) dx = x*sin-1(x) - ∫x / √(1-x2) dx
b. For the integral ∫3x(lnx)2 dx, we can let u = (lnx)2 and dv = 3x dx.
This gives du = (2/lnx)(lnx) dx and v = (3/2)x2.
Applying the formula, we have:
∫3x(lnx)2 dx = (3/2)x2(lnx)2 - ∫(3/2)x2(2/lnx)(lnx) dx
c. For the integral ∫e4xcos(2x) dx, we can let u = e4x and dv = cos(2x) dx.
This gives du = 4e4x dx and v = (1/2)sin(2x).
Applying the formula, we have:
∫e4xcos(2x) dx = (1/2)e4xsin(2x) - ∫(1/2)(4e4x)sin(2x) dx