Final Answer:
The correlation coefficient of the given data is approximately 0.37.
Step-by-step explanation:
To calculate the correlation coefficient, several intermediate steps are involved.
Given data:
![\[x: 1, 4, 8, 6, 2\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ljzq7ormsn5f6k5xy8mq22gk9ftse6g6p6.png)
![\[y: 16, 20, 15, 22, 9\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/w5f5oza6bvkyz7erqatda0j7v4uejmjbg0.png)
Step 1: Calculate the means of x and y.
![\[ \text{Mean of x (} \bar{x} \text{)} = (1 + 4 + 8 + 6 + 2)/(5) = (21)/(5) = 4.2 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/3e76o9iaevtrrys8qn40obw3kp5w5maw2i.png)
\
![[ \text{Mean of y (} \bar{y} \text{)} = (16 + 20 + 15 + 22 + 9)/(5) = (82)/(5) = 16.4 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/3hwqxe435x6w4208jhexgwaxgl85nsppj3.png)
Step 2: Calculate the differences from the means for each x and y value.
![\[ \text{Differences for x:} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/zjyb51d3g7e77pqlm884mpkd9feiwizjcl.png)
![\[ 1 - 4.2 = -3.2, \, 4 - 4.2 = -0.2, \, 8 - 4.2 = 3.8, \, 6 - 4.2 = 1.8, \, 2 - 4.2 = -2.2 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/zkuzrq7u5vu22tkbtm7fe5cozjwp90dtj2.png)
![\[ \text{Differences for y:} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/k2dlkk7czd63ke5ujantffc9ebd8v58ylz.png)
![\[ 16 - 16.4 = -0.4, \, 20 - 16.4 = 3.6, \, 15 - 16.4 = -1.4, \, 22 - 16.4 = 5.6, \, 9 - 16.4 = -7.4 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/2glf7mu64v7pyg99vmzv5vnpvypin37dka.png)
Step 3: Multiply the differences together for each pair of values.
![\[ \text{Product of differences:} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/w56o329f7fbloxhsanflaehs1wkeijg7vt.png)
![\[ (-3.2)(-0.4) = 1.28, \, (-0.2)(3.6) = -0.72, \, (3.8)(-1.4) = -5.32, \, (1.8)(5.6) = 10.08, \, (-2.2)(-7.4) = 16.28 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/udr20jjt7rbvmqbx1gc0ck5ctepl2cj6kf.png)
Step 4: Calculate the sum of the products and the sum of the squares of the differences for x and y separately.
![\[ \text{Sum of products of differences} = 1.28 + (-0.72) + (-5.32) + 10.08 + 16.28 = 21.6 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ic8nf3ouiad1pe7effuuks0xwdk8nb4hch.png)
![\[ \text{Sum of squares of differences for x:} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ew9hz6l6lcu0t9j0ss2aw85j39q4v3p7i1.png)
![\[ (-3.2)^2 + (-0.2)^2 + (3.8)^2 + (1.8)^2 + (-2.2)^2 = 10.24 + 0.04 + 14.44 + 3.24 + 4.84 = 32.8 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/icccv9zjs9fo4d97hurvdhd6wmykkhjc4x.png)
![\[ \text{Sum of squares of differences for y:} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/5ii42mbk1c1plh3jzxmd7o2pvaaotyxjr5.png)
![\[ (-0.4)^2 + (3.6)^2 + (-1.4)^2 + (5.6)^2 + (-7.4)^2 = 0.16 + 12.96 + 1.96 + 31.36 + 54.76 = 101.2 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/q15nwz8qngmt4frts4ztrktgqc2h8ipzo2.png)
Step 5: Plug these values into the correlation coefficient formula:
![\[ \text{Correlation coefficient} = \frac{\text{Sum of products of differences}}{\sqrt{\text{Sum of squares of differences for x} * \text{Sum of squares of differences for y}}} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/exps99uzew5leape6ma1i56069b7jegzwu.png)
![\[ = (21.6)/(√(32.8 * 101.2)) \approx (21.6)/(√(3322.56)) \approx (21.6)/(57.62) \approx 0.3748 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/mpv4u3b5w60k8pvbnbb0big7vwxy2hgy04.png)
Rounded to three decimal places, the correlation coefficient is approximately 0.375 or 0.37.