2.3k views
1 vote
Question 3 of 25

f(x) = 4x³ + 6x² – 3x - 4
g(x) = 4x - 3
Find (f - g)(x).
O A. (f- g)(x) = 4x³ + 6x² + x − 1
-
O B. (ƒ — g)(x) = 4x³ + 6x² − 7x - 7
O c. (f- g)(x) = 4x³ + 6x² - 7x - 1
D. (ƒ − g)(x) = 4x³ + 6x² + x − 7
O
-

Question 3 of 25 f(x) = 4x³ + 6x² – 3x - 4 g(x) = 4x - 3 Find (f - g)(x). O A. (f-example-1

1 Answer

5 votes

Final answer:

To find (f - g)(x), we subtract g(x) from f(x) and simplify to get the result: (f - g)(x) = 4x³ + 6x² - 7x - 1.

Step-by-step explanation:

To find (f - g)(x), we subtract the function g(x) from f(x). The function f(x) is given by f(x) = 4x³ + 6x² − 3x - 4 and the function g(x) is g(x) = 4x - 3. Performing the subtraction, we have:

(f - g)(x) = f(x) - g(x) = (4x³ + 6x² - 3x - 4) - (4x - 3)

This simplifies to:

(f - g)(x) = 4x³ + 6x² - 3x - 4 - 4x + 3

Combining like terms:

(f - g)(x) = 4x³ + 6x² - 7x - 1

Therefore, the correct answer is (f - g)(x) = 4x³ + 6x² - 7x - 1.

User CreMedian
by
7.6k points