357,965 views
32 votes
32 votes
If cos B = 7/8, then what is the positive value of tan 1/2 B, in simplest radical formwith a rational denominator?

User Swinkaran
by
3.1k points

1 Answer

12 votes
12 votes

Let us use the rule of the double of the angle

Since


\cos B=2\cos ^2(B)/(2)-1

Substitute cos B by 7/8


(7)/(8)=2\cos ^2(B)/(2)-1

Add 1 to both sides


\begin{gathered} (7)/(8)+1=2\cos ^2(B)/(2)-1+1 \\ (15)/(8)=2\cos ^2(B)/(2) \end{gathered}

Divide both sides by 2


\begin{gathered} ((15)/(8))/(2)=(2\cos ^2(B)/(2))/(2) \\ (15)/(16)=\cos ^2(B)/(2) \end{gathered}

Take a square root for both sides


\begin{gathered} \sqrt[]{(15)/(16)}=\cos (B)/(2) \\ \cos (B)/(2)=\frac{\sqrt[]{15}}{4} \end{gathered}

let us find sin B

Since


\sin ^2(B)/(2)+\cos ^2(B)/(2)=1

Then


\sin ^2(B)/(2)+(15)/(16)=1

Subtract 15/16 from both sides


\begin{gathered} \sin ^2(B)/(2)+(15)/(16)-(15)/(16)=1-(15)/(16) \\ \sin ^2(B)/(2)=(1)/(16) \end{gathered}

Take a square root for both sides


\begin{gathered} \sin (B)/(2)=\sqrt[]{(1)/(16)} \\ \sin (B)/(2)=(1)/(4) \end{gathered}

Since


\tan (B)/(2)=(\sin (B)/(2))/(\cos (B)/(2))

Then


\begin{gathered} \tan (B)/(2)=\frac{(1)/(4)}{\frac{\sqrt[]{15}}{4}} \\ \tan (B)/(2)=\frac{1}{\sqrt[]{15}} \end{gathered}

The value of tan(1/2 B) is


\frac{1}{\sqrt[]{15}}*\frac{\sqrt[]{15}}{\sqrt[]{15}}=\frac{\sqrt[]{15}}{15}

User Fabien ESCOFFIER
by
2.9k points