47.6k views
4 votes
Use the substitution x=6sect to evaluate the integral ∫​dx/x√x^2-36​. Note: Use C for an arbitrary constant.

User Djuth
by
7.5k points

1 Answer

5 votes

Answer:

The value of the integral ∫ dx / (x√x^2 - 36) is -x/6 + C.

Explanation:

To evaluate the integral ∫ dx / (x√x^2 - 36) using the substitution

x = 6sect, we can follow these steps:

Step 1:

Find the derivative of x = 6sect with respect to t.

dx = 6sec(t)tan(t) dt

Step 2:

Substitute the expression for dx and x into the integral, and simplify.

∫ (6sec(t)tan(t) dt) / (6sect * √(36sec^2(t) - 36))

Simplifying further:

∫ sec(t)tan(t) dt / (√(36sec^2(t) - 36))

∫ tan(t) dt / (√(sec^2(t)))

Step 3:

Simplify using trigonometric identities.

∫ tan(t) dt / (sec(t))

∫ sin(t) / cos(t) dt

Step 4:

Apply the substitution u = cos(t), du = -sin(t) dt.

∫ -du

-u + C

Step 5:

Substitute back u = cos(t).

-cos(t) + C

Step 6:

Substitute back x = 6sect.

-cos(t) + C

-cos(arccos(x/6)) + C

-x/6 + C

Therefore,

The integral ∫ dx / (x√x^2 - 36) evaluated using the given substitution

x = 6sect is -x/6 + C.

User Hanisha
by
8.1k points