Final Answer:
The solution of the integral ∫ 1/x 2 36−x 2 dx is 1/6 arcsin(x/6) + C
Step-by-step explanation:
We can evaluate the integral using the trigonometric substitution:
x = 6sinθ
dx = 6cosθ dθ
Substituting these into the integral, we get:
∫ 1/x 2 36−x 2 dx = ∫ 1/(6sinθ) 2 36−(6sinθ) 2 6cosθ dθ
Simplifying, we get:
∫ 1/(36sin 2θ) 6cosθ dθ
We can now make the substitution:
u = sinθ
du = cosθ dθ
Substituting these into the integral, we get:
∫ 1/(36u 2) 6du
Integrating, we get:
(1/36)u −1 + C
Substituting u = sinθ back, we get:
(1/36)sin −1 θ + C
Finally, substituting x = 6sinθ back, we get:
1/6 arcsin(x/6) + C