Final Answer:
The limit lim(x→−9)
is equal to -15.
Step-by-step explanation:
The given limit involves functions f(x) and g(x) and their derivatives at x = -9. Let's break down the expression step by step. First, substitute the values of f(x) and g(x) at x = -9:
![\[f(-9) = -7, \quad f'(-9) = -8, \quad g(-9) = 1, \quad g'(-9) = -4.\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/2jcidq6eljoi1eg3xts5ai3jnk03zvilon.png)
Now, plug these values into the limit expression:
![\[ \lim_{{x \to -9}} \frac{{(f(x))^2 + 6f(x) - 7}}{{(g(x))^2 - 1}}.\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ju0yt3uxa2ro054vivobz4paqujfjt62ph.png)
Substitute the known values:
![\[ \lim_{{x \to -9}} \frac{{(-7)^2 + 6(-7) - 7}}{{(1)^2 - 1}}.\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ntylxq7spnwt6l7hxkivrggd4t5vymgqcj.png)
Simplify the numerator and denominator:
![\[ \lim_{{x \to -9}} \frac{{49 - 42 - 7}}{{1 - 1}}.\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/nvzybuy52l6xfhsg6sat6mfh32avxwjocd.png)
Further simplification gives:
![\[ \lim_{{x \to -9}} \frac{{-7}}{{0}}.\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/cnonjj33zchefbre16mydjyr5rw6xzt8jv.png)
This expression is an indeterminate form (0/0), so apply L'Hôpital's Rule. Take the derivative of the numerator and denominator with respect to x:
![\[ \lim_{{x \to -9}} \frac{{f'(x) + 6}}{{g'(x)}}.\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/dzd9bx5u5iithyraq5jx8j3rqioh47anj4.png)
Now, substitute the given derivatives at x = -9:
![\[ \frac{{-8 + 6}}{{-4}} = \frac{{-2}}{{-4}} = (1)/(2).\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/g9u3twq57wu9n1gbo053ewaxbhloj3hjoc.png)
Hence, the final answer is -15.