14.2k views
5 votes
Compute the moment generating funciton for X∼Γ(α,β), with density f X (x)= 1/Γ(α)β α xα−1 e −x/β ,00. - Compute the mean and variance of X. - If X∼Γ(α,1), what is the distribution of βX ? Show your work.

User Pavanmvn
by
8.3k points

1 Answer

6 votes

Final answer:

In this case, if X ~ Γ(α, 1), then βX ~ Γ(α, 1/β).

ᶠ_ˣ⁽ˣ⁾ ⁼ ⁽¹/Γ⁽α⁾⁾ * β^α * ˣ^⁽α⁻¹⁾ * ᵉ^⁽⁻ˣ/β⁾

Step-by-step explanation:

To compute the moment generating function (MGF) for X ~ Γ(α, β), we need to follow these steps:

  • 1. Recall that the moment generating function (MGF) of a random variable X is defined as
    M(t) = E(e^(tX)), where t is a real number.
  • 2. Substitute the given density function fX(x) = (1/Γ(α)) * β^α * x⁽α⁻¹⁾* e⁽⁻ˣ/β⁾ into the MGF formula: M(t) = E(e⁽ᵗˣ⁾ ) = ∫(e⁽ᵗˣ⁾ ) * fX(x)) dx from 0 to ∞.
  • 3. Simplify the expression inside the integral by substituting the given values:
  • f_X(x) = (1/Γ(α)) * β^α * x⁽α⁻¹⁾ * e⁽⁻ˣ/β⁾.
  • 4. Apply the integral operation to calculate the MGF:
  • M(t) = ∫(e⁽ᵗˣ⁾ * (1/Γ(α)) * β^α * x⁽α⁻¹⁾ * e⁽⁻ˣ/β⁾) dx from 0 to ∞.
  • 5. Combine the exponential terms:
  • M(t) = (1/Γ(α)) * β^α * ∫(x⁽α⁻¹⁾ * e^((t-1)x/β)) dx from 0 to ∞.
  • 6. Apply the gamma function property:
  • ∫(x⁽α⁻¹⁾ * e⁽⁽ᵗ⁻¹⁾ˣ/β⁾⁾ dx = β^α * Γ(α) * (t-1)⁽⁻α⁾
  • 7. Substitute this result back into the MGF expression:
  • M(t) = (1/Γ(α)) * β^α * β^α * Γ(α) * (t-1)⁽⁻α⁾
  • 8. Simplify the expression:
  • M(t) = (β(t-1))⁽⁻α⁾

To compute the mean and variance of X:

1. Recall that for X ~ Γ(α, β), the mean (μ) and variance (σ²) can be expressed as follows:

μ = α * β

σ² = α * β²

If X ~ Γ(α, 1) and we want to find the distribution of βX:

1. Recall that if X ~ Γ(α, β), then βX ~ Γ(α, 1/β).

2. Therefore, if X ~ Γ(α, 1), then βX ~ Γ(α, 1/β).

User MrTux
by
7.1k points