Final answer:
The solution to the initial value problem
, with the constant determined by the initial condition
.
Explanation:
To solve the initial value problem
with the initial condition
, we need to separate variables and integrate.
First, separate variables:
![\[(1)/(\sec^2(7\pi e^(-t)))dy = 7e^(-t)dt\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/tem13569qcwvalka9spi4lle46idty62c0.png)
Integrate both sides:
![\[\int (1)/(\sec^2(7\pi e^(-t)))dy = \int 7e^(-t)dt\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/pf1c7gy87y9iqjygjyy81nrufuvd5gur08.png)
The left side involves the integral of the secant squared function, which is
:
![\[\tan(7\pi e^(-t)) = -7e^(-t) + C\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/70v8ka8f2znbogg2xhia1dt98ygde5gbo4.png)
Now, apply the initial condition
:
![\[\tan(7\pi e^(-\ln 4)) = -7e^(-\ln 4) + C\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/knux54v8oo6cuc967i5nkb9wmh26r04nvt.png)
Simplify the expression and solve for
:
![\[\tan\left((7\pi)/(4)\right) = -(7)/(4) + C\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/p84jkkpktjilto3bqwzbq04qtz5bl0h151.png)
![\[C = -(7)/(4) + \tan\left((7\pi)/(4)\right)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/td90kwwnh1x1bvcdhs6usopisrz9mmov4y.png)
Now, substitute
back into the equation:
![\[\tan(7\pi e^(-t)) = -7e^(-t) -(7)/(4) + \tan\left((7\pi)/(4)\right)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/oec9buy82s1a6jkvfpp02cc2is7utd7dfk.png)
This is the implicit solution to the initial value problem. If you need an explicit solution for
, it may involve inverse trigonometric functions, and the exact form will depend on how you choose to express it.