113k views
3 votes
Consider the following hypotheses: H emptyset : mu = 70 H_{A} mu ne70 table or t table) Find the p-value for this test based on the following sample information. (You may find it useful to reference the appropriate table: z a. overline x =66: s =12.0: n = 25 O 0.02 ≤ p-value < 0.05 D - value > 0.1 O 0.01 s p-value < 0.02 O p-value < 0.01 O 0.05 s p-value < 0.1 b. overline x = 74 s = 120 n = 25 O p-value ≥ 0.10 0.05 s p-value < 0.1 O 0.02 s p-value < 0.05 O 0.01 s p-value < 0.02 O p-value <0.01 c. overline x = 67 ; s = 11.3 n = 25 O p-value > 0.10 O p-value < 0.01 O 0.02 ≤ p-value < 0.05 O 0.01 s p-value < 0.02 O 0.05 s p-value < 0.10

1 Answer

2 votes

Final Answer:

a.
\(0.02 \leq \text{p-value} < 0.05\)

b.
\(\text{p-value} \geq 0.10\)

c.
\(\text{p-value} < 0.01\)

Step-by-step explanation:

To find the p-values for the given hypotheses, a Z-test can be used to compare the sample mean
(\(\overline{x}\)) to a known population mean
(\(\mu\)) under the null hypothesis
(\(H_0: \mu = 70\)).

The formula to calculate the Z-test statistic is:


\[ Z = \frac{\overline{x} - \mu}{(s)/(√(n))} \]

a. For
\(\overline{x} = 66\), \(s = 12.0\), and
\(n = 25\):

\
[ Z = (66 - 70)/((12.0)/(√(25))) = (-4)/(2.4) = -1.67 \]

Using a standard normal distribution table or calculator, the corresponding two-tailed p-value is between 0.02 and 0.05.

b. For
\(\overline{x} = 74\), \(s = 120\), and
\(n = 25\):


\[ Z = (74 - 70)/((120)/(√(25))) = (4)/(24) = 0.17 \]

The p-value is greater than 0.10, indicating insufficient evidence to reject the null hypothesis.

c. For
\(\overline{x} = 67\),
\(s = 11.3\), and
\(n = 25\):


\[ Z = (67 - 70)/((11.3)/(√(25))) = (-3)/((11.3)/(5)) = -1.33 \]

Using a standard normal distribution table or calculator, the corresponding two-tailed p-value is less than 0.01.

Therefore, the p-values for the given sample information fall into the ranges specified in options a, b, and c.

User Jeereddy
by
8.2k points