Final answer:
The correlation coefficient, r, of the given data is approximately -1.556.
Step-by-step explanation:
To find the correlation coefficient, we will use the formula:
r = (nΣxy - ΣxΣy) / √((nΣx^2 - (Σx)^2)(nΣy^2 - (Σy)^2))
We can calculate the necessary values and plug them into the formula to find the correlation coefficient, r.
Step 1: Calculate the values we need:
For x: Σx = 4.49 + 4.49 + 5.36 + 5.79 + 6.36 = 26.49
For y: Σy = 63 + 95 + 93 + 72 + 60 = 383
For xy: Σxy = 4.49*63 + 4.49*95 + 5.36*93 + 5.79*72 + 6.36*60 = 1247.62
For x^2: Σx^2 = (4.49)^2 + (4.49)^2 + (5.36)^2 + (5.79)^2 + (6.36)^2 = 132.4196 + 132.4196 + 28.7296 + 33.4941 + 40.5696 = 367.6325
For y^2: Σy^2 = 63^2 + 95^2 + 93^2 + 72^2 + 60^2 = 3969 + 9025 + 8649 + 5184 + 3600 = 30427
Step 2: Plug the values into the formula:
r = (5 * 1247.62 - 26.49 * 383) / √((5 * 367.6325 - (26.49)^2)(5 * 30427 - (383)^2))
Step 3: Calculate the result:
r = (6238.1 - 10115.47) / √((1838.1625 - 700.0401)(152135 - 146689))
r = -3877.37 / √((1138.1224)(5446))
r = -3877.37 / √(6205753.11)
Step 4: Calculate the square root:
r = -3877.37 / 2489.801
r ≈ -1.556
Therefore, the correlation coefficient, r, is approximately -1.556.