When sampling with replacement, each draw is independent of the previous ones, and the same value can be drawn more than once.
The different possible samples of size 2 from the population {2, 4, 6, 8, 10} are as follows:
{2, 2}
{2, 4}
{2, 6}
{2, 8}
{2, 10}
{4, 2}
{4, 4}
{4, 6}
{4, 8}
{4, 10}
{6, 2}
{6, 4}
{6, 6}
{6, 8}
{6, 10}
{8, 2}
{8, 4}
{8, 6}
{8, 8}
{8, 10}
{10, 2}
{10, 4}
{10, 6}
{10, 8}
{10, 10}
Now, let's find the mean of each sample:
{2, 2} --> Mean = (2 + 2) / 2 = 2
{2, 4} --> Mean = (2 + 4) / 2 = 3
{2, 6} --> Mean = (2 + 6) / 2 = 4
{2, 8} --> Mean = (2 + 8) / 2 = 5
{2, 10} --> Mean = (2 + 10) / 2 = 6
{4, 2} --> Mean = (4 + 2) / 2 = 3
{4, 4} --> Mean = (4 + 4) / 2 = 4
{4, 6} --> Mean = (4 + 6) / 2 = 5
{4, 8} --> Mean = (4 + 8) / 2 = 6
{4, 10} --> Mean = (4 + 10) / 2 = 7
{6, 2} --> Mean = (6 + 2) / 2 = 4
{6, 4} --> Mean = (6 + 4) / 2 = 5
{6, 6} --> Mean = (6 + 6) / 2 = 6
{6, 8} --> Mean = (6 + 8) / 2 = 7
{6, 10} --> Mean = (6 + 10) / 2 = 8
{8, 2} --> Mean = (8 + 2) / 2 = 5
{8, 4} --> Mean = (8 + 4) / 2 = 6
{8, 6} --> Mean = (8 + 6) / 2 = 7
{8, 8} --> Mean = (8 + 8) / 2 = 8
{8, 10} --> Mean = (8 + 10) / 2 = 9
{10, 2} --> Mean = (10 + 2) / 2 = 6
{10, 4} --> Mean = (10 + 4) / 2 = 7
{10, 6} --> Mean = (10 + 6) / 2 = 8
{10, 8} --> Mean = (10 + 8) / 2 = 9
{10, 10} --> Mean = (10 + 10) / 2 = 10