Answer:

![\textsf{b)}\quad f^(-1)(y)=-\frac{\sqrt[3]{2(y+3)}}{2}](https://img.qammunity.org/2024/formulas/mathematics/college/wk7xdwapmak3ng38xuwa9ogipce3qg68l4.png)

Explanation:
Part a
Given equation:

Differentiate f(x) using the power rule and the constant rule:


To find f'(-10), substitute x = -10 into f'(x):



Therefore, the value of f'(-10) is:


Part b
To find the formula for x = f⁻¹(y), rearrange the equation to isolate x then replace x with f⁻¹(y):



![-x=\sqrt[3]{(y+3)/(4)}](https://img.qammunity.org/2024/formulas/mathematics/college/7eueu4snnzfztxjohepeb7kicf6bacm9vu.png)
![x=-\sqrt[3]{(y+3)/(4)}](https://img.qammunity.org/2024/formulas/mathematics/college/6xwovd3ch3nmpam8jg2bexgu7itnxy5133.png)
Replace x with f⁻¹(y):
![f^(-1)(y)=-\sqrt[3]{(y+3)/(4)}](https://img.qammunity.org/2024/formulas/mathematics/college/s9uyk3fu7bbbhvrzg7w1bhmuxpv3sthdqm.png)
To eliminate the radical denominator, multiply by ∛2 / ∛2:
![f^(-1)(y)=-\frac{\sqrt[3]{y+3}}{\sqrt[3]{4}}\cdot \frac{\sqrt[3]{2}}{\sqrt[3]{2}}](https://img.qammunity.org/2024/formulas/mathematics/college/34wyiiicf8oer2g2tca1zs57oqsvu1r29r.png)
![f^(-1)(y)=-\frac{\sqrt[3]{2(y+3)}}{\sqrt[3]{4\cdot2}}](https://img.qammunity.org/2024/formulas/mathematics/college/iy205zz01hjcsl7uc8stdidu8i6ov85bh0.png)
![f^(-1)(y)=-\frac{\sqrt[3]{2(y+3)}}{\sqrt[3]{8}}](https://img.qammunity.org/2024/formulas/mathematics/college/9dvkkjdkj5648r65kj19r8aqvpxbzfhaia.png)
![f^(-1)(y)=-\frac{\sqrt[3]{2(y+3)}}{\sqrt[3]{2^3}}](https://img.qammunity.org/2024/formulas/mathematics/college/28n2trr944hpy1vmpscef01xmx73uk4eb5.png)
![f^(-1)(y)=-\frac{\sqrt[3]{2(y+3)}}{2}](https://img.qammunity.org/2024/formulas/mathematics/college/cgjwp31qtjobatkigv3k4sn5gkkxb0pfof.png)
Therefore, the formula for x = f⁻¹(y) is:
![\large\boxed{\boxed{f^(-1)(y)=-\frac{\sqrt[3]{2(y+3)}}{2}}}](https://img.qammunity.org/2024/formulas/mathematics/college/tjfnajaiunfx5s7uxq5difpkacjin7ad8v.png)

Part c
To find df⁻¹/dy at y = f(-10), we first need to differentiate f⁻¹(y) with respect to y. To do this, we can use the chain rule.

![\textsf{Let}\;\;x=-(1)/(2)\sqrt[3]{u}\;\;\textsf{where}\;\;u=2y+6](https://img.qammunity.org/2024/formulas/mathematics/college/2mde70kk7x0c28sx3492yq61ijlyebm115.png)
Differentiate the two parts separately:


Now, put everything back into the chain rule formula:


Substitute back in u = 2y + 6:

Therefore:

Find the value of y when x = -10:

Therefore, to find df⁻¹/dy at y = f(-10), substitute y = 3997 into (f⁻¹)'(y):

Therefore, the value of df⁻¹/dy at y = f(-10) is:
