134k views
0 votes
Attached below are my calculus questions. If you are able to help, thank you...!

Attached below are my calculus questions. If you are able to help, thank you...!-example-1

2 Answers

2 votes

a.
\( f'(-10) = -1200 \).

b.
\( f^(-1)(y) = \boxed{-\frac{\sqrt[3]{2(y + 3)}}{2}} \).

c.
\( \left(f^(-1)\right)'(3997) = -(1)/(1200) \).

How did we get the value?

a. Find
\( (df)/(dx) \) at \( x = -10 \):

Given the function
\( y = f(x) = -4x^3 - 3 \), we can find the derivative
\( (df)/(dx) \) by differentiating each term:


\[ (df)/(dx) = -12x^2 \]

Now, evaluate
\( (df)/(dx) \) at \( x = -10 \):


\[ (df)/(dx)(-10) = -12(-10)^2 \\= -12(100) \\= -1200 \]

So,
\( f'(-10) = -1200 \).

b. Find a formula for
\( x = f^(-1)(y) \):

To find the inverse function
\( f^(-1)(y) \), interchange
\( x \) and
\( y \) and solve for
\( y \):


\[ y = -4x^3 - 3 \]

Interchange
\( x \) and
\( y \):


\[ x = -4y^3 - 3 \]

Now, solve for
\( y \):


\[ 4y^3 = -x - 3 \]


\[ y^3 = -(x + 3)/(4) \]


\[ y = \sqrt[3]{-(x + 3)/(4)} \]

So,
\( f^(-1)(y) = \boxed{-\frac{\sqrt[3]{2(y + 3)}}{2}} \).

c. Find
\( (df^(-1))/(dy) \)at
\( y = f(-10) \):

Evaluate
\( f(-10) \) using the original function:


\[ f(-10) = -4(-10)^3 - 3 \\= -4(-1000) - 3 \\= 4000 - 3 \\= 3997 \]

Now, find
\( (df^(-1))/(dy) \) at
\( y = 3997 \):


\[ (df^(-1))/(dy)(3997) = (1)/(f'\left(f^(-1)(3997)\right)) \]

We know
\( f^(-1)(3997) = -10 \), and we previously found
\( f'(-10) = -1200 \).


\[ (df^(-1))/(dy)(3997) = (1)/(-1200) \\= -(1)/(1200) \]

So,
\( \left(f^(-1)\right)'(3997) = -(1)/(1200) \).

User Valerio Cocchi
by
7.9k points
1 vote

Answer:


\textsf{a)} \quad f'(-10)=-1200


\textsf{b)}\quad f^(-1)(y)=-\frac{\sqrt[3]{2(y+3)}}{2}


\textsf{c)} \quad \left(f^(-1)\right)'(f(-10))=-(1)/(1200)

Explanation:

Part a

Given equation:


y=f(x)=-4x^3-3

Differentiate f(x) using the power rule and the constant rule:


f'(x)=3 \cdot -4x^(3-1)-0


f'(x)=-12x^2

To find f'(-10), substitute x = -10 into f'(x):


f'(-10)=-12(-10)^2


f'(-10)=-12(100)


f'(-10)=-1200

Therefore, the value of f'(-10) is:


\large\boxed{\boxed{f'(-10)=-1200}}


\hrulefill

Part b

To find the formula for x = f⁻¹(y), rearrange the equation to isolate x then replace x with f⁻¹(y):


y=-4x^3-3


y+3=-4x^3


(y+3)/(4)=-x^3


-x=\sqrt[3]{(y+3)/(4)}


x=-\sqrt[3]{(y+3)/(4)}

Replace x with f⁻¹(y):


f^(-1)(y)=-\sqrt[3]{(y+3)/(4)}

To eliminate the radical denominator, multiply by ∛2 / ∛2:


f^(-1)(y)=-\frac{\sqrt[3]{y+3}}{\sqrt[3]{4}}\cdot \frac{\sqrt[3]{2}}{\sqrt[3]{2}}


f^(-1)(y)=-\frac{\sqrt[3]{2(y+3)}}{\sqrt[3]{4\cdot2}}


f^(-1)(y)=-\frac{\sqrt[3]{2(y+3)}}{\sqrt[3]{8}}


f^(-1)(y)=-\frac{\sqrt[3]{2(y+3)}}{\sqrt[3]{2^3}}


f^(-1)(y)=-\frac{\sqrt[3]{2(y+3)}}{2}

Therefore, the formula for x = f⁻¹(y) is:


\large\boxed{\boxed{f^(-1)(y)=-\frac{\sqrt[3]{2(y+3)}}{2}}}


\hrulefill

Part c

To find df⁻¹/dy at y = f(-10), we first need to differentiate f⁻¹(y) with respect to y. To do this, we can use the chain rule.


\boxed{\begin{array}{c}\underline{\text{Chain Rule for Differentiation}}\\\\\text{If\;\;$y=f(u)$\;\;and\;\;$u=g(x)$\;\;then:}\\\\\frac{\text{d}x}{\text{d}y}=\frac{\text{d}x}{\text{d}u}*\frac{\text{d}u}{\text{d}y}\end{array}}


\textsf{Let}\;\;x=-(1)/(2)\sqrt[3]{u}\;\;\textsf{where}\;\;u=2y+6

Differentiate the two parts separately:


\begin{aligned}x=-(1)/(2)u^(\frac13) \implies \frac{\text{d}x}{\text{d}u}&=(1)/(3)\cdot -(1)/(2)u^(\frac13-1)\\\\\frac{\text{d}x}{\text{d}u}&=-(1)/(6)u^(-\frac23)\\\\\frac{\text{d}x}{\text{d}u}&=-(1)/(6u^(\frac23))\end{aligned}


u=2y+6\implies \frac{\text{d}u}{\text{d}y}=2\\

Now, put everything back into the chain rule formula:


\frac{\text{d}x}{\text{d}y}=-(1)/(6u^(\frac23))*2


\frac{\text{d}x}{\text{d}y}=-(1)/(3u^(\frac23))

Substitute back in u = 2y + 6:


\frac{\text{d}x}{\text{d}y}=-(1)/(3(2y+6)^(\frac23))

Therefore:


\frac{\text{d}f^(-1)}{\text{d}y}=(f^(-1))'(y)=-(1)/(3(2y+6)^(\frac23))

Find the value of y when x = -10:


\begin{aligned}y=f(-10)&=-4(-10)^3-3\\\\ &=-4(-1000)-3\\\\ &=4000-3\\\\ &=3997\end{aligned}

Therefore, to find df⁻¹/dy at y = f(-10), substitute y = 3997 into (f⁻¹)'(y):


\begin{aligned}\left(f^(-1)\right)'(f(-10))=(f^(-1))(3997)&=-(1)/(3(2(3997)+6)^(\frac23))\\\\&=-(1)/(3(8000)^(\frac23))\\\\&=-(1)/(3(400))\\\\&=-(1)/(1200)\end{aligned}

Therefore, the value of df⁻¹/dy at y = f(-10) is:


\large\boxed{\boxed{\left(f^(-1)\right)'(f(-10))=-(1)/(1200)}}

User Stephen Ross
by
9.1k points