118k views
0 votes
(AP Chem)

A rigid 2.5L sealed vessel contains O2, N2, and Ar with partial pressures of 0.438 atm, 0.284 atm, and 0.625 atm respectively. Find the mole fraction of each gas.

User BozoJoe
by
7.8k points

1 Answer

3 votes

Answer:

Mole fraction of O2 = 0.325

Mole fraction of N2 = 0.211

Mole fraction of Ar = 0.464.

Step-by-step explanation:

Calculate the Total Pressure

The total pressure (
\sf P_{\textsf{total}}) is the sum of the partial pressures of the three gases:


\sf P_{\textsf{total}} = P_{\textsf{O2}} + P_{\textsf{N2}} + P_{\textsf{Ar}}


\sf P_{\textsf{total}} = 0.438 \, \textsf{atm} + 0.284 \, \textsf{atm} + 0.625 \, \textsf{atm}


\sf P_{\textsf{total}} = 1.347 \, \textsf{atm}

Calculate the Mole Fraction of Each Gas

Using the Ideal Gas Law:


\sf PV = nRT

where:


  • \sf P is the pressure (in atm),

  • \sf V is the volume (in liters),

  • \sf n is the number of moles (in mol),

  • \sf R is the ideal gas constant (in L·atm/mol·K),

  • \sf T is the temperature (in K).

Given:


  • \sf P = P_{\textsf{total}} = 1.347 \, \textsf{atm}

  • \sf V = 2.5 \, \textsf{L}

  • \sf T = 273.15 \, \textsf{K} (assuming room temperature)

  • \sf R = 0.08206 \, \textsf{L•atm/mol•K}

Solving for
\sf n:


\sf n = (PV)/(RT)


\sf n = \frac{(1.347 \, \textsf{atm})(2.5 \, \textsf{L})}{(0.08206 \, atm/ mol·K)(273.15 \, \textsf{K})}


\sf n = 0.100 \, \textsf{mol}

Mole Fractions:


\sf X_{\textsf{O2}} = \frac{n_{\textsf{O2}}}{n_{\textsf{total}}} = \frac{0.438 \, \textsf{atm}}{1.347 \, \textsf{atm}} = 0.325


\sf X_{\textsf{N2}} = \frac{n_{\textsf{N2}}}{n_{\textsf{total}}} = \frac{0.284 \, \textsf{atm}}{1.347 \, \textsf{atm}} = 0.211


\sf X_{\textsf{Ar}} = \frac{n_{\textsf{Ar}}}{n_{\textsf{total}}} = \frac{0.625 \, \textsf{atm}}{1.347 \, \textsf{atm}} = 0.464

Therefore, the mole fraction of O2 is 0.325, the mole fraction of N2 is 0.211, and the mole fraction of Ar is 0.464.

User Tom Spencer
by
7.9k points