79.4k views
4 votes
Find the derivative of​

Find the derivative of​-example-1
User Riri
by
7.7k points

2 Answers

4 votes

Answer:

See the solution given in the image.

Find the derivative of​-example-1
User Cantuket
by
6.9k points
5 votes

Answer:


-(3\csc^2(x)\cos\left(√(\cot^3(x))\right)√(\cot(x)))/(2)

Explanation:

Given:


y=\sin\left(√(\cot^3(x))\right)

To find the derivative, we can use the chain rule.


\boxed{\begin{array}{c}\underline{\text{Chain Rule for Differentiation}}\\\\\text{If\;\;$y=f(u)$\;\;and\;\;$u=g(x)$\;\;then:}\\\\\frac{\text{d}y}{\text{d}x}=\frac{\text{d}y}{\text{d}u}*\frac{\text{d}u}{\text{d}x}\end{array}}


\textsf{Let}\;\;y=\sin(u) \;\;\textsf{where}\;\;u=√(\cot^3(x))

Differentiate the two parts separately:


y=\sin(u) \implies \frac{\text{d}y}{\text{d}u}=\cos(u)


\begin{aligned}u=√(\cot^3(x))=\left(\cot (x)\right)^(3)/(2)\implies \frac{\text{d}u}{\text{d}x}&=(3)/(2)\left(\cot (x)\right)^{(1)/(2)}\left(-\csc^2(x)\right)\\\\\frac{\text{d}u}{\text{d}x}&=-(3\csc^2(x)√(\cot (x)))/(2)\end{aligned}

Now, put everything back into the chain rule formula:


\frac{\text{d}y}{\text{d}x}=\cos(u)* -(3\csc^2(x)√(\cot(x)))/(2)


\frac{\text{d}y}{\text{d}x}=\cos\left(√(\cot^3(x))\right)* -(3\csc^2(x)√(\cot(x)))/(2)


\frac{\text{d}y}{\text{d}x}=-(3\csc^2(x)\cos\left(√(\cot^3(x))\right)√(\cot(x)))/(2)

User Fankt
by
7.5k points